

Small Molecule, Antibody, and Protein (SMAP)

Catalog No. 160011

OVERVIEW

Gator[™] Small Molecule, Antibody, and Protein (SMAP) Biosensors are useful for the study and determination of small molecule binding kinetics. The proprietary chemistry allows for surface capacity immobilization of biotinylated proteins (recommended molar coupling ratio of less than three) or proteins expressed with an AviTagTM for a wide range of molecular weights. Following immobilization, the ability of the biotinylated protein of interest to bind to small molecules can be measured to determine the k_{on} , k_{off} , and K_n of interaction.

MATERIALS REQUIRED

SMAP Biosensor	Catalog No. 160011
Max Plate	Catalog No. 130062
Black Plate	Greiner 655209
Quantitation (Q) Buffer	Catalog No. 120019

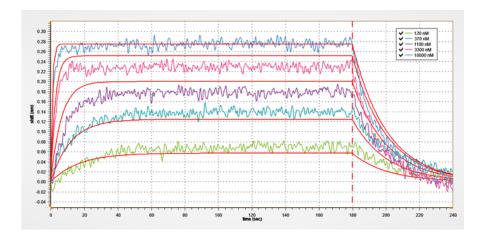
Figure 1: High capacity loading of biotinylated bovine carbonic anhydrase II (10 μg/mL in Q Buffer) on to SMAP biosensor for 30 min at 400 rpm.

STORAGE

Store at room temperature in the foil pouch, ensuring zipper is fully sealed to avoid humidity/ moisture contamination. In high-humidity environments, storage inside a dry cabinet is recommended.

GENERAL APPLICATIONS

Kinetic studies of protein-small molecule binding interaction and protein-peptide binding interaction


GENERAL METHODS

Sample Volume

Black Plate: 200 μL (180 μL minimum) Max Plate: 280 μL (250 μL maximum)

Pre-wet Conditions

 $250~\mu L$ assay buffer in Max Plate, 10 min at 1000 rpm

Figure 2: Following a 10 min 1000 rpm pre-wet in PBS with 0.05% DMSO, biotinylated bovine carbonic anhydrase II loaded SMAP biosensors were exposed to furosemide (MW 330 Da) over a range of concentrations (0.12 to 10 μ M in PBS with 0.05% DMSO) for 5 rounds of association and dissociation. Global-fit analysis using GatorTM software for furosemide binding interaction with bovine carbonic anhydrase II. $K_D = 485$ nM ($R^2 = 0.98$)